منابع مشابه
Random time series in astronomy.
Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see ...
متن کاملKernels for Periodic Time Series Arising in Astronomy
We present a method for applying machine learning algorithms to the automatic classification of astronomy star surveys using time series of star brightness. Currently such classification requires a large amount of domain expert time. We show that a combination of phase invariant similarity and explicit features extracted from the time series provide domain expert level classification. To facili...
متن کاملAnomaly Detection in Time Series of Chlorophyll Around the Time and Location of Large Coastal Earthquakes Using Random Forest Method
Earthquake is one of the most devastating natural hazards which efforts to predict the time, location and magnitude of it have not been yet completely successful. Remote Sensing data is proved to be an effective source of information about lithospheric and atmospheric activities around the impending earthquakes which are referred to as earthquake precursors. The issue of detecting anomalies in ...
متن کاملClustering Random Walk Time Series
We present in this paper a novel non-parametric approach useful for clustering independent identically distributed stochastic processes. We introduce a pre-processing step consisting in mapping multivariate independent and identically distributed samples from random variables to a generic non-parametric representation which factorizes dependency and marginal distribution apart without losing an...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2013
ISSN: 1364-503X,1471-2962
DOI: 10.1098/rsta.2011.0549